Hands-free Interactive Image Segmentation Using Eyegaze
نویسنده
چکیده
This paper explores a novel approach to interactive user-guided image segmentation, using eyegaze information as an input. The method includes three steps: 1) eyegaze tracking for providing user input, such as setting object and background seed pixel selection; 2) an optimization method for image labeling that is constrained or affected by user input; and 3) linking the two previous steps via a graphical user interface for displaying the images and other controls to the user and for providing real-time visual feedback of eyegaze and seed locations, thus enabling the interactive segmentation procedure. We developed a new graphical user interface supported by an eyegaze tracking monitor to capture the user’s eyegaze movement and fixations (as opposed to traditional mouse moving and clicking). The user simply looks at different parts of the screen to select which image to segment, to perform foreground and background seed placement and to set optional segmentation parameters. There is an eyegaze-controlled “zoom” feature for difficult images containing objects with narrow parts, holes or weak boundaries. The image is then segmented using the random walker image segmentation method. We performed a pilot study with 7 subjects who segmented synthetic, natural and real medical images. Our results show that getting used the new interface takes about only 5 minutes. Compared with traditional mouse-based control, the new eyegaze approach provided a 18.6% speed improvement for more than 90% of images with high object-background contrast. However, for low contrast and more difficult images it took longer to place seeds using the eyegaze-based “zoom” to relax the required eyegaze accuracy of seed placement.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کامل